Binding site specificity and factor redundancy in activator protein-1-driven human papillomavirus chromatin-dependent transcription.

激活蛋白-1驱动的人乳头瘤病毒染色质依赖性转录中的结合位点特异性和因子冗余性

阅读:5
作者:Wang Wei-Ming, Wu Shwu-Yuan, Lee A-Young, Chiang Cheng-Ming
Activator protein-1 (AP-1) regulates diverse gene responses triggered by environmental cues and virus-induced cellular stress. Although many signaling events leading to AP-1 activation have been described, the fundamental features underlying binding site selection and factor recruitment of dimeric AP-1 complexes to their target genes remain mostly uncharacterized. Using recombinant full-length human AP-1 dimers formed between c-Jun and Fos family members (c-Fos, FosB, Fra-1, Fra-2) for DNA binding and transcriptional analysis, we found that each of these AP-1 complex exhibits differential activity for distinct non-consensus AP-1 sites present in human papillomavirus (HPV), and each AP-1 complex is capable of activating transcription from in vitro-reconstituted HPV chromatin in a p300- and acetyl-CoA-dependent manner. Transcription from HPV chromatin requires AP-1-dependent and contact-driven recruitment of p300. Acetylation of dimeric AP-1 complexes by p300 enhances AP-1 binding to DNA. Using a human C-33A cervical cancer-derived cell line harboring the episomal HPV type 11 genome, we illustrate binding site selectivity recognized by c-Jun, JunB, JunD, and various Fos family members in a combinatorial and unique pattern, highlighting the diversity and importance of non-canonical binding site recognition by various AP-1 family proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。