Unexpected Remyelination in the Absence of Matrix Metalloproteinase 7.

基质金属蛋白酶 7 缺失的情况下发生的意外髓鞘再生

阅读:5
作者:Gorter Rianne P, Arreguin Andrea J, Oost Wendy, de Jonge Jenny C, Kampinga Harm H, Amor Sandra, Colognato Holly, Baron Wia
In multiple sclerosis (MS), an influx of immune cells into the central nervous system leads to focal demyelinating lesions in the brain, optic nerve, and spinal cord. As MS progresses, remyelination increasingly fails, leaving neuronal axons vulnerable to degeneration and resulting in permanent neurological disability. In chronic MS lesions, the aberrant accumulation of extracellular matrix (ECM) molecules, including fibronectin and hyaluronan, impairs oligodendrocyte progenitor cell differentiation, contributing to remyelination failure. Removing inhibitory ECM is therefore a therapeutic target to stimulate remyelination in MS. Intriguingly, the expression of the fibronectin-degrading enzyme matrix metalloproteinase 7 (MMP7) is decreased in chronic MS lesions compared to control white matter. Therefore, we examined the role of MMP7 upon cuprizone-induced demyelination, hypothesizing that the lack of MMP7 would lead to impaired breakdown of its ECM substrates, including fibronectin, and diminished remyelination. Unexpectedly, remyelination proceeded efficiently in the absence of MMP7. In the remyelination phase, the lack of MMP7 did not lead to the accumulation of fibronectin or of laminin, another MMP7 substrate. Moreover, in the setting of chronic demyelination, levels of fibronectin were actually lower in MMP7(-/-) mice, while levels of hyaluronan, which is not a known MMP7 substrate, were also lower. Overall, these results indicate that MMP7 is not essential for remyelination in the cuprizone model and point to an unexpected complexity in how MMP7 deficiency influences fibronectin and hyaluronan levels in chronic demyelination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。