Small cell lung cancer (SCLC) has a dismal 5-year survival rate of less than 7%, with limited advances in first-line treatment over the past four decades. Tumor-initiating cells (TIC) contribute to resistance and relapse, a major impediment to SCLC treatment. In this study, we identify kinase suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade, as a critical regulator of SCLC TIC formation and tumor initiation in vivo. We further show that KSR1 mediates cisplatin resistance in SCLC. Whereas 50% to 70% of control cells show resistance after 6-week exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC cells in ASCL1, NeuroD1, and POU2F3 subtypes. KSR1 knockout significantly enhances the ability of cisplatin to decrease SCLC TICs via in vitro extreme limiting dilution analysis, indicating that KSR1 disruption enhances the cisplatin toxicity of cells responsible for therapeutic resistance and tumor initiation. The ability of KSR1 disruption to prevent cisplatin resistance in H82 tumor xenograft formation supports this conclusion. Previous studies indicate that ERK activation inhibits SCLC tumor growth and development. We observe a minimal effect of pharmacologic ERK inhibition on cisplatin resistance and no impact on TIC formation via in vitro extreme limiting dilution analysis. However, mutational analysis of the KSR1 DEF domain, which mediates interaction with ERK, suggests that ERK interaction with KSR1 is essential for KSR1-driven cisplatin resistance. These findings reveal KSR1 as a key regulatory protein in SCLC biology and a potential therapeutic target across multiple SCLC subtypes. IMPLICATIONS: Genetic manipulation of the molecular scaffold KSR1 in SCLC cells reveals its contribution to cisplatin resistance and tumor initiation.
KSR1 Mediates Small Cell Lung Carcinoma Tumor Initiation and Cisplatin Resistance.
KSR1介导小细胞肺癌肿瘤的发生和顺铂耐药性
阅读:4
作者:Chatterjee Deepan, Svoboda Robert A, Huisman Dianna H, Drapkin Benjamin J, Vieira Heidi M, Rao Chaitra, Askew James W, Fisher Kurt W, Lewis Robert E
| 期刊: | Molecular Cancer Research | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 23(6):553-566 |
| doi: | 10.1158/1541-7786.MCR-24-0652 | 研究方向: | 细胞生物学、肿瘤 |
| 疾病类型: | 肺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
