Electrogenic transepithelial ion transport can be measured with the short-circuit current technique. Such experiments are frequently used to evaluate the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel that is defective in cystic fibrosis, one of the most frequent genetic diseases. Typically, CFTR activity is estimated from the effect of CFTR(inh)-172, a selective CFTR inhibitor. Unexpectedly, we found that CFTR(inh)-172, in addition to PPQ-102, another CFTR inhibitor, caused only partial inhibition of CFTR function, particularly in epithelia in pro-inflammatory conditions, which are characterized by abundant mucus secretion. We hypothesized that the mucus layer was responsible for the poor activity of CFTR inhibitors. Therefore, we treated the epithelial surface with the reducing agent dithiothreitol to remove mucus. Removal of mucus, confirmed by immunofluorescence, resulted in highly enhanced sensitivity of CFTR to pharmacological inhibition. Our results show that the mucus layer represents an important barrier whose presence limits the activity of pharmacological agents. This is particularly relevant for CFTR and the evaluation of therapeutic approaches for correction of the basic defect in cystic fibrosis. KEY POINTS: Activity of the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel can be evaluated by measuring the inhibition elicited by the selective blockers CFTR(inh)-172 and PPQ-102. In short-circuit current recordings on human airway epithelia, CFTR inhibitors had only a partial effect on cAMP-dependent chloride secretion, suggesting the possible contribution of other ion channels. The mucus layer covering the epithelial surface was removed with the reducing agent dithiothreitol. Treatment of epithelia with dithiothreitol markedly improved the efficacy of CFTR inhibitors. The partial effect of CFTR inhibitors might be explained by the presence of the mucus layer acting as a barrier.
The apical mucus layer alters the pharmacological properties of the airway epithelium.
顶端粘液层改变了气道上皮的药理特性
阅读:3
作者:Guidone Daniela, de Santis Martina, Pesce Emanuela, Capurro Valeria, Pedemonte Nicoletta, Galietta Luis J V
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 May;603(9):2619-2632 |
| doi: | 10.1113/JP287891 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
