The Lack of Amyloidogenic Activity Is Persistent in Old WT and APP(swe)/PS1ΔE9 Mouse Retinae.

老年 WT 和 APP(swe)/PS1ΔE9 小鼠视网膜中淀粉样蛋白生成活性的缺乏是持续存在的

阅读:4
作者:Joly Sandrine, Rodriguez Léa, Pernet Vincent
We have previously reported that vision decline was not associated with amyloidogenesis processing in aging C57BL/6J wild-type (WT) mice and in a mouse model of Alzheimer's disease, the APP(swe)/PS1ΔE9 transgenic mouse model (APP/PS1). This conclusion was drawn using middle-aged (10-13 months old) mice. Here, we hypothesized that compared with hippocampal and cortical neurons, the weak amyloidogenic activity of retinal neurons may result in a detectable release of amyloid β (Aβ) only in aged mice, i.e., between 14 and 24 months of age. The aim of the present study was thus to follow potential activity changes in the amyloidogenic and nonamyloidogenic pathways of young (4 months) and old (20-24 months) WT and APP/PS1 mice. Our results showed that in spite of retinal activity loss reported by electroretinogram (ERG) recordings, the level of amyloid beta precursor protein (APP) and its derivatives did not significantly vary in the eyes of old vs. young mice. Strikingly, the ectopic expression of human APP(swe) in APP/PS1 mice did not allow us to detect Aβ monomers at 23 months. In contrast, Aβ was observed in hippocampal and cortical tissues at this age but not at 4 months of life. In contrast, optic nerve transection-induced retinal ganglion cell injury significantly affected the level of retinal APP and the secretion of soluble APP alpha in the vitreous. Collectively, these results suggest that the amyloidogenic and nonamyloidogenic pathways are not involved in visual function decline in aging mice. In WT and APP/PS1 mice, it is proposed that retinal neurons do not have the capacity to secrete Aβ in contrast with other cortical and hippocampal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。