Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4Â weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.
Exercise Improves Cerebral Blood Flow and Functional Outcomes in an Experimental Mouse Model of Vascular Cognitive Impairment and Dementia (VCID).
运动改善了血管性认知障碍和痴呆症 (VCID) 实验小鼠模型的脑血流和功能结果
阅读:4
作者:Khan Mohammad Badruzzaman, Alam Haroon, Siddiqui Shahneela, Shaikh Muhammad Fasih, Sharma Abhinav, Rehman Amna, Baban Babak, Arbab Ali S, Hess David C
| 期刊: | Translational Stroke Research | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Apr;15(2):446-461 |
| doi: | 10.1007/s12975-023-01124-w | 种属: | Mouse |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
