CircSARS-CV2-N1368 from SARS-CoV-2 impairs endothelial cell function through the upregulation of ATF7 to activate TLR4/NF-κB/ROS signaling.

来自 SARS-CoV-2 的 CircSARS-CV2-N1368 通过上调 ATF7 激活 TLR4/NF-κB/ROS 信号通路来损害内皮细胞功能

阅读:7
作者:Wen Yi-Hong, Zhao Heng-Li, Wu Shao-Yu, Jiang Jia-Xue, Gao Yuan, Wang Zi-Fan, Liu Xiao-Yao, Yu Fei, Ou Tao, Zhao An-Zhi, Chen Li-Wen, Fang Jin-Hua, Wu Hua-Yan, Zhu Jie-Ning, Ma Ning, Sun Jiu-Feng, Fang Xian-Hong, Shan Zhi-Xin
SARS-CoV-2 can encode circular RNAs (circRNAs); however, the potential effects of exogenous SARS-CoV-2 circRNAs on cardiovascular sequelae remain unknown. Three circRNAs derived from the nucleocapsid (N) gene of SARS-CoV-2, namely, circSARS-CV2-Ns, were identified for functional studies. In particular, circSARS-CV2-N1368 was shown to enhance platelet adhesiveness to endothelial cells (ECs) and inhibit EC-dependent vascular relaxation. Moreover, exogenous expression of circSARS-CV2-N1368 suppressed EC proliferation and migration and decreased angiogenesis and cardiac organoid beating. Mechanistically, we elucidated that circSARS-CV2-N1368 sponged the microRNA miR-103a-3p, which could reverse circSARS-CV2-N1368-induced EC damage. Additionally, activating transcription factor 7 (ATF7) was identified as a target gene of miR-103a-3p, and Toll-like receptor 4 (TLR4) was verified as a downstream gene of ATF7 that mediates circARS-CV2-N1368-induced activation of nuclear factor kappa B (NF-κB) signaling and ROS production in ECs. Importantly, the reactive oxygen species (ROS) scavenger NAC mitigated the circSARS-CV2-N1368-promoted EC impairment. Our findings reveal that the TLR4/NF-κB/ROS signal pathway is critical for mediating circSARS-CV2-N1368-promoted oxidative damage in ECs, providing insights into the endothelial impairment caused by circSARS-CV2-Ns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。