Impact of α-synuclein fibril structure on seeding activity in experimental models of Parkinson's disease.

α-突触核蛋白原纤维结构对帕金森病实验模型中种子活性的影响

阅读:5
作者:Ohira Junichiro, Sawamura Masanori, Kawano Kenichi, Sato Risa, Taguchi Tomoyuki, Ishimoto Tomoyuki, Ueda Jun, Ikuno Masashi, Matsuzawa Shu-Ichi, Matsuzaki Katsumi, Takahashi Ryosuke, Yamakado Hodaka
The central pathogenesis of Parkinson's disease involves the misfolding and aggregation of α-synuclein (α-syn). There is a widespread belief that α-syn can propagate in a prion-like manner, and α-syn preformed fibrils (PFFs) have been widely used to establish α-syn propagation models. However, achieving standardized protocols for generating PFFs is challenging due to the influence of various factors on propagation efficiency, resulting in inter-laboratory and inter-experimental variability. Among these factors, the size of the PFFs is considered the most influential as unsonicated PFFs exhibit limited seeding and propagation abilities. Therefore, the objective of our research is to examine the impact of the size and conformation of sonicated PFFs on seeding activity. PFFs were sonicated under various conditions using a conventional water bath sonicator and a high-power sonicator, which is commonly used for DNA shearing in next-generation sequencing. Each sonicated PFF was analyzed for in vitro/in vivo seeding activities, after size confirmation by electron microscopy and a conformational analysis by Fourier Transform Infrared (FTIR) spectroscopy. Strong sonication for 30 min generated extremely short fibrils with the highest seeding activity, which is the optimal condition for the propagation model, whereas sonication for 60 minutes or more led to a reduction in seeding activity. FTIR spectroscopy suggested that sonication disrupted the aggregated strands and generated new fibril ends, thereby accounting for the increased seeding activity; however, prolonged sonication for 60 min or more released monomers with disrupted β-sheet structure from PFFs and reduced the seeding activity. In conclusion, the balance between size reduction and preservation of the β-sheet structure in PFFs plays a critical role in seeding activity. Optimizing these parameters of α-syn PFFs can help improve reproducible preclinical animal models based on α-syn propagation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。