Synaptic and cognitive impairment associated with L444P heterozygous glucocerebrosidase mutation.

与 L444P 杂合葡糖脑苷脂酶突变相关的突触和认知障碍

阅读:7
作者:Lado Wudu, Ham Ahrom, Li Hongyu, Zhang Hong, Chang Audrey Yuen, Sardi Sergio Pablo, Alcalay Roy N, Arancio Ottavio, Przedborski Serge, Tang Guomei
Cognitive impairment is a common but poorly understood non-motor aspect of Parkinson's disease, negatively affecting the patient's functional capacity and quality of life. The mechanisms underlying cognitive impairment in Parkinson's disease remain elusive, limiting treatment and prevention strategies. This study investigates the molecular and cellular basis of cognitive impairment associated with heterozygous mutations in GBA1, the strongest risk gene for Parkinson's disease, which encodes glucocerebrosidase, a lysosome enzyme that degrades the glycosphingolipid glucosylceramide into glucose and ceramide. Using a Gba1L444P/+ mouse model, we provide evidence that L444P heterozygous Gba1 mutation (L444P/+) causes hippocampus-dependent spatial and reference memory deficits independently of α-synuclein (αSyn) accumulation, glucocerebrosidase lipid substrate accumulation, dopaminergic dysfunction and motor deficits. The mutation disrupts hippocampal synaptic plasticity and basal synaptic transmission by reducing the density of hippocampal CA3-CA1 synapses, a mechanism that is dissociated from αSyn-mediated presynaptic neurotransmitter release. Using a well-characterized Thy1-αSyn pre-manifest Parkinson's disease mouse model overexpressing wild-type human αSyn, we find that the L444P/+ mutation exacerbates hippocampal synaptic αSyn accumulation, synaptic and cognitive impairment in young Gba1L444P/+:Thy1-αSyn double mutant animals. With age, Thy1-αSyn mice manifest motor symptoms, and the double mutant mice exhibit more exacerbated synaptic and motor impairment than the Thy1-αSyn mice. Taken together, our results suggest that heterozygous L444P GBA1 mutation alone perturbs hippocampal synaptic structure and function, imposing a subclinical pathological burden for cognitive impairment. When co-existing αSyn overexpression is present, heterozygous L444P GBA1 mutation interacts with αSyn pathology to accelerate Parkinson's disease-related cognitive impairment and motor symptoms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。