Background/Objectives: Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa(®), ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts. Here, we sought to evaluate whether a liposomal formulation of HCQ could effectively modulate autophagy in vivo and augment treatment outcomes in the same tumor model. Methods: We developed two liposomal formulations of HCQ: a pH-loaded formulation and a formulation based on copper complexation. The pharmacokinetics of each formulation was evaluated in CD1 mice following intravenous administration. An efficacy study was performed in immunocompromised mice bearing established JIMT-1tumors. Autophagy markers in tumor tissue harvested after four weeks of treatment were assessed by Western blot. Results: The liposomal formulations engendered ~850-fold increases in total drug exposure over time relative to the free drug. Both liposomal and free HCQ in combination with gefitinib provided comparable therapeutic benefits (p > 0.05). An analysis of JIMT-1 tumor tissue indicated that the liposomal HCQ and gefitinib combination augmented the inhibition of autophagy in vivo compared to the free HCQ and gefitinib combination as demonstrated by increased LC3-II and p62/SQSTM1 (p62) protein levels. Conclusions: The results suggest that liposomal HCQ has a greater potential to modulate autophagy in vivo compared to free HCQ; however, this did not translate to better therapeutic effects when used in combination with gefitinib to treat a gefitinib-resistant tumor model.
Liposomal Formulation of Hydroxychloroquine Can Inhibit Autophagy In Vivo.
羟氯喹脂质体制剂可在体内抑制自噬
阅读:4
作者:Dragowska Wieslawa H, Singh Jagbir, Wehbe Mohamed, Anantha Malathi, Edwards Katarina, Gorski Sharon M, Bally Marcel B, Leung Ada W Y
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2024 | 起止号: | 2024 Dec 30; 17(1):42 |
| doi: | 10.3390/pharmaceutics17010042 | 研究方向: | 信号转导 |
| 信号通路: | Autophagy | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
