The role of CaMKII in calcium-activated death pathways in bone marrow B cells.

CaMKII 在骨髓 B 细胞钙激活死亡途径中的作用

阅读:4
作者:Bissonnette Stephanie L, Haas Amelia, Mann Koren K, Schlezinger Jennifer J
Calcium is an essential signaling molecule in developing B cells, thus altering calcium dynamics represents a potential target for toxicant effects. GW7845, a tyrosine analog and potent peroxisome proliferator-activated receptor γ agonist, induces rapid mitogen-activated protein kinase (MAPK)-dependent apoptosis in bone marrow B cells. Changes in calcium dynamics are capable of mediating rapid initiation of cell death; therefore, we investigated the contribution of calcium to GW7845-induced apoptosis. Treatment of a nontransformed murine pro/pre-B cell line (BU-11) with GW7845 (40 μM) resulted in intracellular calcium release. Multiple features of GW7845-induced cell death were suppressed by the calcium chelator BAPTA, including MAPK activation, loss of mitochondrial membrane potential, cytochrome c release, caspase-3 activation, and DNA fragmentation. A likely mechanism for the calcium-mediated effects is activation of CaMKII, a calcium-dependent MAP4K. We observed that three CaMKII isoforms (β, γ, and δ) are expressed in lymphoid tissues and bone marrow B cells. Treatment with GW7845 increased CaMKII activity. All features of GW7845-induced cell death, except loss of mitochondrial membrane potential, were suppressed by CaMKII inhibitors (KN93 and AIP-II), suggesting the activation of multiple calcium-driven pathways. To determine if CaMKII activation is a common feature of early B cell death following perturbation of Ca(2+) flux, we dissected tributyltin (TBT)-induced death signaling. High-dose TBT (1 μM) is known to activate calcium-dependent death. TBT induced rapid apoptosis that was associated with intracellular calcium release, CaMKII activation and MAPK activation, and was inhibited by AIP-II. Thus, we show that early B cells are susceptible to calcium-triggered cell death through a CaMKII/MAPK-dependent pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。