OBJECTIVES: The aim of this study was to evaluate the effects of collagen modification on the osteogenic performance of different surface-modified titanium, including alkaline etching, alkaline etching followed by silanization, and alkaline etching followed by dopamine modification. The proliferation, adhesion, and osteogenic differentiation abilities of MC3T3-E1 cells on the surfaces with collagen modification were analyzed and compared. METHODS: Collagen was immobilized on the surfaces of pure titanium (Ti-C), alkaline-etched titanium (Ti-Na-C), alkaline-etched and silanized titanium (Ti-A-C), and alkaline-etched and dopamine-modified titanium (Ti-D-C), with pure titanium (Ti) as the control group. The surface morphology was observed by scanning electron microscopy (SEM), and the surface elemental composition was analyzed by X-ray photoelectron spectroscopy (XPS). Contact angle measurements were conducted to evaluate the hydrophilicity of the surfaces. MC3T3-E1 cells were cultured on the surfaces, and their proliferation, adhesion, and osteogenic differentiation abilities were assessed using CCK-8 assay, laser scanning confocal microscope, alkaline phosphatase (ALP) staining, Alizarin red staining and quantitative analysis, as well as real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the mRNA expression levels of osteogenic-related genes, including ALP, typeâ collagen (COL-1), osteocalcin (OCN), osteopontin (OPN). RESULTS: SEM and XPS results confirmed the successful immobilization of collagen on the titanium surfaces, with the Ti-Na-C group exhibiting a higher amount of collagen modification. Contact angle measurements showed improved hydrophilicity of the surfaces after collagen modification. CCK-8 results indicated good compatibility of the materials with MC3T3-E1, with enhanced cell proliferation on the collagen-modified surfaces. Cell fluorescence staining revealed better cell spreading on the collagen-modified surfaces, and ALP and Alizarin red staining results suggested that the Ti-Na-C group exhibited the best osteogenic performance, with significantly higher absorbance values in the Alizarin red quantification analysis. RT-qPCR analysis showed that the Ti-Na-C group had the highest expression of the osteogenic-related gene OPN. CONCLUSIONS: Among the different collagen modification approaches employed in this study, collagen modification on alkaline-etched titanium surfaces showed the most conducive effects on MC3T3-E1 cell adhesion, spreading, proliferation, and osteogenic differentiation. This approach can be considered as the optimal collagen modification strategy for enhancing osteogenesis on titanium surfaces.
Effects of collagen modification on the osteogenic performance of different surface-modified titanium samples in vitro.
胶原蛋白修饰对不同表面改性钛样品体外成骨性能的影响
阅读:13
作者:Dong Danni, Huang Yanling, Lai Yingzhen, Yin Ge
| 期刊: | Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Aug 1; 42(4):452-461 |
| doi: | 10.7518/hxkq.2024.2023451 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
