CPT1A Alleviates Senescence and Restores Osteogenic Differentiation of BM-MSC Through SOD2 Succinylation.

CPT1A 通过 SOD2 琥珀酰化缓解衰老并恢复 BM-MSC 的成骨分化

阅读:4
作者:Wang Xiao Yuan, Liu Shi Chang, Chen Xu Xu, Yan Liang, Li Liang, Le He Gao, Yang Ming, Liu Zhong Kai, Yin Xin Hua
Bone marrow mesenchymal stem cells (BM-MSCs) have promising prospects in bone repair and regenerative medicine. However, BM-MSCs gradually lose their original pluripotency and differentiation potential after successive passages. This study aimed to reveal the mechanism underlying the phenomenon. Western blotting, SA-β-gal staining and Alizarin red staining were used to evaluate the senescence phenotype and osteogenic differentiation ability. Mitochondrial ROS levels were detected using flow cytometry. Protein interactions and succinylation modifications were identified by using Co-IP assays. With the increase in passage times, the proliferation and osteogenic differentiation of BM-MSCs were gradually weakened, and the expression level of CPT1A was decreased. BM-MSCs with fewer passages (P1-P5 generations) showed increased mitochondrial ROS production and reduced enzyme activity of superoxide dismutase 2 (SOD2) and the mitochondrial level after the knockdown of CPT1A. In contrast, overexpression of CPT1A in multiple-round-passed BM-MSCs cells (P10-P15 generations) has the opposite effect. Therefore, CPT1A level is associated with the ageing phenotypes and the osteogenic differentiation capacity of BM-MSCs. Knocking down CPT1A significantly reduced the succinylation modification of SOD2, resulting in a decrease in SOD2 enzyme activity and SOD2 levels in mitochondria. Overexpression of CPT1A enhanced the succinylation of SOD2 at the key site K130, thereby reducing cell senescence and promoting osteogenic differentiation. However, this boosting effect was reversed when a mutation occurred at the K130 site of SOD2. CPT1A promotes succinylation modification at the SOD2 (K130) site to induce the accumulation of SOD2 in mitochondria and the enzyme activity, which alleviates BM-MSC senescence and enhances osteogenic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。