Lacticaseibacillus rhamnosus GG-driven remodeling of arginine metabolism mitigates gut barrier dysfunction.

鼠李糖乳杆菌 GG 驱动的精氨酸代谢重塑可减轻肠道屏障功能障碍

阅读:13
作者:Antonio Jayson M, Liu Yue, Suntornsaratoon Panan, Jones Abigail, Ambat Jayanth, Bala Ajitha, Kanattu Joshua Joby, Flores Juan, Bandyopadhyay Sheila, Upadhyay Ravij, Bhupana Jagannatham Naidu, Su Xiaoyang, Li Wei Vivian, Gao Nan, Ferraris Ronaldo P
Inflammatory bowel diseases (IBDs) and gut barrier impairment are associated with changes in dietary tryptophan and arginine metabolism, but mechanisms of barrier perturbation and restoration are unclear. We show here that the widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) enhances gut barrier functions in part through stimulating the intestinal arginine metabolic pathway, and this mechanism depends on the sufficiency of dietary tryptophan in the host. Specifically, LGG markedly upregulates argininosuccinate lyase (ASL), the enzyme that breaks down argininosuccinate into arginine. ASL expression is markedly reduced during experimental colitis with an accumulation of serum argininosuccinate. LGG colonization in mice reduces serum argininosuccinate, a metabolite that inversely correlates with tight junction gene expression, impairs barrier function, and exacerbates dextran sodium sulfate colitis. We show that LGG-derived indoles as well as arginine metabolites enhanced argininosuccinate lyase (ASL) and nitric oxide synthase (NOS2) expression, linking microbial metabolism to nitric oxide production and epithelial homeostasis. Patients with IBD have increased ASS1 and decreased ASL expression, suggesting a metabolic bottleneck driving ASA accumulation. We propose that signaling pathways underlying LGG and tryptophan-mediated ASL upregulation can be useful therapeutic targets to normalize arginine metabolism in select patients with IBD.NEW & NOTEWORTHY This study identifies a novel probiotic-driven mechanism linking dietary tryptophan and host arginine metabolism. Lacticaseibacillus rhamnosus GG, in synergy with tryptophan, enhances gut barrier integrity by upregulating argininosuccinate lyase (ASL), a critical enzyme in arginine biosynthesis. Furthermore, we uncover ASL downregulation and serum argininosuccinate elevation in experimental colitis in mice, suggesting a target to guide precision probiotics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。