Inflammatory pathways are often hijacked by cancer cells to favor their own proliferation and survival. Cysteine dioxygenase type 1 (CDO1), an iron-dependent thiol dioxygenase enzyme, catalyzes the rate-limiting step for cysteine oxidation, and so that functions as an important regulator of cellular cysteine availability. However, whether inflammatory environment affects CDO1 activity and cysteine oxidation and its potential impact on tumor growth remains substantially elusive. In the present study, we demonstrate that CDO1 activity and cysteine oxidation is inhibited upon IL-6 treatment, without noticeable alterations in CDO1 expression. Mechanistically, AKT1 phosphorylates CDO1 T89 under IL-6 treatment, which represses CDO1 enzymatic activity by disrupting iron incorporation. Further, AKT1-mediated CDO1 T89 phosphorylation is required for IL-6-elicited oral squamous cell carcinoma (OSCC) growth, and is associated with the progression of OSCC development. The present data discover a new mechanism by which AKT1-mediated CDO1 T89 phosphorylation governs cysteine oxidation to support OSCC growth, thereby highlighting its value as a potential anti-tumor target.
CDO1 phosphorylation is required for IL-6-induced tumor cell proliferation through governing cysteine availability.
CDO1 磷酸化通过控制半胱氨酸的可用性,是 IL-6 诱导肿瘤细胞增殖所必需的
阅读:4
作者:Li Xin, Zhao Zhe, Ye Hongping, Li Dan, Huang Xiaoke, Lee Jong-Ho, Liu Rui
| 期刊: | Cell Communication and Signaling | 影响因子: | 8.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 23; 23(1):194 |
| doi: | 10.1186/s12964-025-02189-w | 研究方向: | 细胞生物学、肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
