Bronchial epithelial cells derived from the tracheobronchial regions of human airways (HBECs) provide a valuable in vitro model for studying pathological mechanisms and evaluating therapeutics. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media: airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and PneumaCult Ex plus (PEx+). Analysis through RNA sequencing, immune assays, and impedance measurements revealed that PEx+ media significantly drove cell proliferation and a broad proinflammatory phenotype in BCs. In contrast, BCs expanded in AECGM and displayed increased expression of structural and extracellular matrix components at higher passage. AECGM increased expression of some cytokines at high passage, whereas DSI suppressed inflammation implicating the involvement TGF-β in BC inflammatory processes. Differentiation capacity of BCs declined with time in culture irrespective of expansion media. This was associated with an increase in PLUNC expressing secretory cells in AECGM and PEx+ media consistent with the known immune modulatory role of PLUNC in the airways. These findings highlight the profound impact of media conditions on inflammatory niche established by, and function of, in vitro expanded BCs. The broad proinflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic applications.NEW & NOTEWORTHY Airway basal cells, vital for airway regeneration and potential therapies, show significant changes based on culture conditions. Our study reveals that media composition and culture duration greatly affect basal cell properties with profound changes in the proinflammatory phenotype and extracellular matrix deposition driven by changes in growth conditions. These results underscore the critical impact of culture conditions on BC phenotype, influencing cell-based models for airway disease research and therapy.
Culture conditions differentially regulate the inflammatory niche and cellular phenotype of tracheobronchial basal stem cells.
培养条件对气管支气管基底干细胞的炎症微环境和细胞表型有差异性调节作用
阅读:4
作者:Murthy Shubha, Seabold Denise A, Gautam Lalit K, Caceres Adrian M, Sease Rosemary, Calvert Ben A, Busch Shana M, Neely Aaron, Marconett Crystal N, Ryan Amy L
| 期刊: | American Journal of Physiology-Lung Cellular and Molecular Physiology | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 328(4):L538-L553 |
| doi: | 10.1152/ajplung.00293.2024 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
