Glioblastoma is one of the deadliest cancers with a very low chance of survival. Glioblastomas have a poor prognosis because of their infiltrative nature, which makes them difficult to totally isolate with rigorous surgery, radiation, and chemotherapy. Our aim in this study was to investigate the efficacy of boric acid, which has anti-cancer properties, on glioblastoma, which has very limited treatment options. U251 human glioblastoma cell lines were treated with IC25 (15.62âμg/mL), IC50 (31.25âμg/mL) and IC75 (62.5âμg/mL) doses of boric acid. Cell viability and proliferation levels were tested. At the same time, the activity of boric acid on cells was tested through oxidative stress, apoptosis, and semaphorin signalling pathway parameters. Our findings indicate that boric acid induced dose-dependent oxidative stress, cellular growth inhibition, apoptosis and morphological changes in U251 cells. Additionally, treatments with increasing amounts of boric acid resulted in a rise in the production of biomarkers of the semaphorin pathway, which may limit cell growth and proliferation. We found that boric acid activates apoptosis by triggering ROS formation at high doses and at the same time inhibits cell proliferation by increasing semaphorin signalling pathway expressions. Boric acid may act as an anti-cancer agent by activating different mechanisms in a dose-dependent manner.
Boric Acid Induces Oxidative Damage and Apoptosis Through SEMA3A/PLXNA1/NRP1 Signalling Pathway in U251 Glioblastoma Cell.
硼酸通过 SEMA3A/PLXNA1/NRP1 信号通路诱导 U251 胶质母细胞瘤细胞发生氧化损伤和凋亡
阅读:8
作者:Kar Ezgi, Ãvenler Zeynep, HacıoÄlu Ceyhan, Kar Fatih
| 期刊: | Journal of Cellular and Molecular Medicine | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 May;29(9):e70578 |
| doi: | 10.1111/jcmm.70578 | 研究方向: | 信号转导、细胞生物学 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
