Microstructure and Low-Cycle Fatigue Behavior of Al-9Si-4Cu-0.4Mg-0.3Sc Alloy with Different Casting States.

不同铸造状态下 Al-9Si-4Cu-0.4Mg-0.3Sc 合金的微观结构和低周疲劳性能

阅读:3
作者:Wang Guanyi, Che Xin, Zhang Zhipeng, Zhang Haoyu, Zhang Siqian, Li Zhengyuan, Sun Jie
The low-cycle fatigue behavior of Al-9Si-4Cu-0.4Mg-0.3Sc alloy with different casting states was investigated by performing low-cycle fatigue tests and by means of observations and analysis with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). It was found that the metal-mold cast and die-cast Al-9Si-4Cu-0.4Mg-0.3Sc alloys exhibited the cyclic stress response of strain hardening under all imposed total strain amplitudes. The cyclic deformation resistance and fatigue life of the metal-mold cast Al-9Si-4Cu-0.4Mg-0.3Sc alloy were lower than those of the die-cast Al-9Si-4Cu-0.4Mg-0.3Sc alloy. The plastic strain and elastic strain amplitudes of the metal-mold cast and die-cast Al-9Si-4Cu-0.4Mg-0.3Sc alloys were linearly related to the number of reversals to failure, which obeyed the Coffin-Manson and Basquin formulas, respectively. The results of TEM observation revealed that at all imposed total strain amplitudes, the cyclic deformation mechanisms of the metal-mold cast and die-cast Al-9Si-4Cu-0.4Mg-0.3Sc alloys were planar slip and wavy slip at the lower and higher strain amplitudes, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。