Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain.
渗透压应激可诱导酵母朊病毒结构域形成液态凝聚物和淀粉样蛋白
阅读:4
作者:Grizel Anastasia V, Gorsheneva Natalia A, Stevenson Jonathan B, Pflaum Jeremy, Wilfling Florian, Rubel Aleksandr A, Chernoff Yury O
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Oct;300(10):107766 |
| doi: | 10.1016/j.jbc.2024.107766 | 种属: | Yeast |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
