Interleukin (IL)-1β is an apex proinflammatory cytokine produced in response to tissue injury and infection. The output of IL-1β from monocytes and macrophages is regulated not only by transcription and translation but also post-translationally. Release of the active cytokine requires activation of inflammasomes, which couple IL-1β post-translational proteolysis with pyroptosis. Among inflammasome platforms, NOD-like receptor pyrin domain-containing protein 3 (NLRP3) is implicated in the pathogenesis of numerous human disorders in which disease-specific danger-associated molecular patterns (DAMPS) are positioned to drive its activation. As a promising therapeutic target, numerous candidate NLRP3-targeting therapeutics have been described and demonstrated to provide benefits in the context of animal disease models. While showing benefits, published preclinical studies have not explored dose-response relationships within the context of the models. Here, the preclinical pharmacology of a new chemical entity, [(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1H-pyrazol-4-yl)({[(2S)-oxolan-2-yl]methyl})sulfamoyl]azanide (NT-0249), is detailed, establishing its potency and selectivity as an NLRP3 inhibitor. NT-0249 also is evaluated in two acute in vivo mouse challenge models where pharmacodynamic/pharmacokinetic relationships align well with in vitro blood potency assessments. The therapeutic utility of NT-0249 is established in a mouse model of cryopyrin-associated periodic syndrome (CAPS). In this model, mice express a human gain-of-function NLRP3 allele and develop chronic and progressive IL-1β-dependent autoinflammatory disease. NT-0249 dose-dependently reduced multiple inflammatory biomarkers in this model. Significantly, NT-0249 decreased mature IL-1β levels in tissue homogenates, confirming in vivo target engagement. Our findings highlight not only the pharmacological attributes of NT-0249 but also provide insight into the extent of target suppression that will be required to achieve clinical benefit.
Pharmacological Analysis of NLRP3 Inflammasome Inhibitor Sodium [(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1H-pyrazol-4-yl)({[(2S)-oxolan-2-yl]methyl})sulfamoyl]azanide in Cellular and Mouse Models of Inflammation Provides a Translational Framework.
在细胞和小鼠炎症模型中对 NLRP3 炎症小体抑制剂钠 [(1,2,3,5,6,7-六氢-s-茚满-4-基)氨基甲酰基][(1-甲基-1H-吡唑-4-基)({[(2S)-氧杂环戊烷-2-基]甲基})磺酰胺酰基]氮化物进行药理学分析,为转化应用提供了框架
阅读:5
作者:Doedens John R, Smolak Pamela, Nguyen MyTrang, Wescott Heather, Diamond Christine, Schooley Ken, Billinton Andy, Harrison David, Koller Beverly H, Watt Alan P, Gabel Christopher A
| 期刊: | ACS Pharmacology and Translational Science | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024 Apr 18; 7(5):1438-1456 |
| doi: | 10.1021/acsptsci.4c00061 | 种属: | Mouse |
| 研究方向: | 细胞生物学 | 信号通路: | 炎性小体 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
