Toward optimizing diversifying base editors for high-throughput mutational scanning studies.

旨在优化多样化碱基编辑器,以用于高通量突变扫描研究

阅读:4
作者:Schwartz Carley I, Abell Nathan S, Li Amy, Aradhana, Tycko Josh, Truong Alisa, Montgomery Stephen B, Hess Gaelen T
Base editors, including diversifying base editors that create C>N mutations, are potent tools for systematically installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing. To address this knowledge gap, the effect of various design features, such as deaminase recruitment and delivery method (electroporation or lentiviral transduction), on editing was assessed across ∼200 synthetic target sites. The direct fusion of a hyperactive variant of activation-induced cytidine deaminase to the N-terminus of dCas9 (DivA-BE) produced the highest editing efficiency, ∼4-fold better than the previous CRISPR-X method. Additionally, DivA-BE mutagenized the DNA strand that anneals to the targeting sgRNA (target strand) to create complementary C>N mutations, which were absent when the deaminase was fused to the C-terminus of dCas9. Based on these studies that comprehensively analyze the editing patterns of several popular base editors, DivA-BE editors efficiently diversified their target sites, albeit with increased indel frequencies. Overall, the improved editing efficiency makes the DivA-BE editors ideal for discovering functional variants in mutational scanning assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。