Glutamine metabolism is upregulated in many cancers. While multiple glutamine imaging agents have been developed and translated to clinical use, the short half-lives of their signal and instability in vivo limit the aspects of glutamine metabolism they capture. In phantoms at physiological pH, chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) contrast was observed at 11.7âT from glutamine, downstream metabolic products (glutamate and ammonia) and their co-substrates (alanine, aspartate, and cystine/cysteine). This contrast increased at lower pH. These results suggest that both uptake and metabolism of glutamine would increase CEST signal enhancement. We then investigated the feasibility of imaging the uptake (delivery, transport and metabolism) of naturally-occuring glutamine using CEST MRI in preclinical prostate cancer models, wherein key metabolic proteins are the glutamine transporter ASCT2 and as well as enzymes GLS1, ALT2 (GPT2), AST1 (GOT1), and GDH1 (GLUD1). The LNCaP prostate cancer line exhibited higher expression of ASCT2, GDH1, ALT2, and AST1 compared to DU-145 cells. CEST MRI enhancement upon administration of glutamine was consistently higher in LNCaP 3D spheres (phantoms) and tumors (in vivo) than their DU-145 counterparts. Mass spectrometry imaging confirmed higher uptake and metabolism of glutamine in LNCaP tumors. These findings demonstrate that CEST MRI of glutamine is capable of distinguishing preclinical prostate tumor models that differ in glutamine uptake and has potential for translation to clinical use.
Imaging the uptake and metabolism of glutamine in prostate tumor models using CEST MRI.
利用 CEST MRI 对前列腺肿瘤模型中谷氨酰胺的摄取和代谢进行成像
阅读:10
作者:Hodo Yuki, Tressler Caitlin M, Ghaemi Behnaz, Thomas Rebecca, Webster Aliyah S, Bains Williams Kirsten N, Li Yuguo, Pomper Martin G, Dang Chi V, Bhujwalla Zaver M, Bulte Jeff W M, van Zijl Peter C M, Thomas Aline M
| 期刊: | Npj Imaging | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 1; 3(1):34 |
| doi: | 10.1038/s44303-025-00100-3 | 研究方向: | 代谢、肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
