Proliferating Microglia Exhibit Unique Transcriptional and Functional Alterations in Alzheimer's Disease.

阿尔茨海默病中增殖的小胶质细胞表现出独特的转录和功能改变

阅读:10
作者:Villacampa Nàdia, Sarlus Heela, Martorell Paula, Bhalla Khushbu, Castro-Gomez Sergio, Vieira-Saecker Ana, Slutzkin Ilya, Händler Kristian, Venegas Carmen, McManus Róisín, Ulas Thomas, Beyer Marc, Segal Eran, Heneka Michael T
Proliferation of microglia represents a physiological process, which is accelerated in several neurodegenerative disorders including Alzheimer disease (AD). The effect of such neurodegeneration-associated microglial proliferation on function and disease progression remains unclear. Here, we show that proliferation results in profound alterations of cellular function by providing evidence that newly proliferated microglia show impaired beta-amyloid clearance in vivo. Through sorting of proliferating microglia of APP/PS1 mice and subsequent transcriptome analysis, we define unique proliferation-associated transcriptomic signatures that change with age and beta-amyloid accumulation and are characterized by enrichment of immune system-related pathways. Of note, we identify the DEAD-Box Helicase 3 X-Linked (DDX3X) as a key molecule to modulate microglia activation and cytokine secretion and it is expressed in the AD brain. Together, these results argue for a novel concept by which phenotypic and functional microglial changes occur longitudinally as a response to accelerated proliferation in a neurodegenerative environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。