Cell-cell communication (CCC) is crucial for cellular function and tissue homeostasis. Existing methods for protein-oriented CCC detection often overlook metabolite-mediated CCC (mCCC), and adapting them to mCCC analysis is challenging due to fundamental differences in the underlying biological mechanisms. To fill this gap, we developed MEBOCOST, an algorithm built on scRNA-seq and metabolic flux balance analysis to detect mCCC among single cells. Comprehensive benchmarking analyses based on simulation, spatial, CRISPR screen, and clinical patient data demonstrated the robustness of MEBOCOST in detecting biologically significant mCCC events. We applied MEBOCOST to scRNA-seq datasets of human white adipose tissues and unraveled macrophages were the predominant source of mCCC reprogramming in obese patients. Moreover, analysis in mice brown adipose tissue successfully recapitulated known and further uncovered new mCCC events, including a glutamine-mediated endothelial-to-adipocyte communication, which was experimentally verified to regulate adipocyte differentiation. Therefore, MEBOCOST is a valuable tool for researchers investigating mCCC in diverse biological contexts and disease samples. MEBOCOST is freely available at https://github.com/kaifuchenlab/MEBOCOST.
MEBOCOST maps metabolite-mediated intercellular communications using single-cell RNA-seq.
MEBOCOST 利用单细胞 RNA 测序技术绘制代谢物介导的细胞间通讯图
阅读:6
作者:Zheng Rongbin, Zhang Yang, Tsuji Tadataka, Gao Xinlei, Shamsi Farnaz, Wagner Allon, Yosef Nir, Cui Kui, Chen Hong, Kiebish Michael A, Aristizabal-Henao Juan J, Narain Niven R, Zhang Lili, Tseng Yu-Hua, Chen Kaifu
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 20; 53(12):gkaf569 |
| doi: | 10.1093/nar/gkaf569 | 研究方向: | 代谢、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
