ROS-activated CD147-type I interferon signaling axis drives vascular smooth muscle cell fate transition and abdominal aortic aneurysm progression.

ROS激活的CD147-I型干扰素信号轴驱动血管平滑肌细胞命运转变和腹主动脉瘤进展

阅读:4
作者:Zhong Fangyuan, Zhang Hengyuan, Guo Xinning, Zhao Yichao, Wang Yufei, Li Wenli, Lyu Yuyan, Ge Heng, Lu Xiyuan, Pu Jun
The transition of healthy contractile vascular smooth muscle cells to an inflammatory and senescent phenotype is a key driver of abdominal aortic aneurysm (AAA). Although CD147 is highly expressed in VSMCs and upregulated in aneurysmal tissue, the precise role of VSMC-derived CD147 in phenotypic switching and AAA pathogenesis remains elusive. Here, we identified a previously unrecognized nuclear localization of CD147 in VSMCs, and pathological stimuli upregulated the nuclear CD147 expression through reactive oxygen species-dependent mechanisms. Multi-omics analysis integrating RNA sequencing, CUT&Tag, and protein interactome profiling revealed that nuclear CD147 directly interacts with the STAT1/STAT2 complex to activate the IRF7-IFNα/β axis under oxidative stress (H(2)O(2) exposure), thereby driving VSMC senescence and inflammatory reprogramming. Functionally, CD147 deletion in VSMCs significantly mitigated Angiotensin II- and CaPO(4)-induced AAA formation, accompanied by improved VSMC phenotype, reduced vascular inflammation and extracellular matrix degradation in vivo. Pharmacological inhibition of CD147 using Myricetin, a food-derived natural small-molecule compound, effectively discouraged oxidative stress-induced VSMC fate transition in vitro, and suppressed AAA progression and improved vascular integrity in two murine AAA models, underscoring its therapeutic potential. Collectively, these findings identify CD147 as a key driver of interferon-mediated VSMC fate transition, providing mechanistic insights into AAA progression and a promising therapeutic target for vascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。