The Whi2-Psr1-Psr2 complex selectively regulates TORC1 and autophagy under low leucine conditions but not nitrogen depletion.

Whi2-Psr1-Psr2 复合物在低亮氨酸条件下选择性地调节 TORC1 和自噬,但在氮缺乏条件下则不调节

阅读:4
作者:Wang Yitao, Ping Yang, Zhou Rui, Wang Guiqin, Zhang Yu, Yang Xueyu, Zhao Mingjun, Liu Dongsheng, Kulkarni Madhura, Lamb Heather, Niu Qingwei, Hardwick J Marie, Teng Xinchen
Amino acids and ammonia serve as sources of nitrogen for cell growth and were previously thought to have similar effects on yeast. Consistent with this idea, depletion of either of these two nitrogen sources inhibits the target of rapamycin complex 1 (TORC1), leading to induction of macroautophagy/autophagy and inhibition of cell growth. In this study, we show that Whi2 and the haloacid dehalogenase (HAD)-type phosphatases Psr1 and Psr2 distinguish between these two nitrogen sources in Saccharomyces cerevisiae, as the Whi2-Psr1-Psr2 complex inhibits TORC1 in response to low leucine but not in the absence of nitrogen. In contrast, a parallel pathway controlled by Npr2 and Npr3, components of the Seh1-associated complex inhibiting TORC1 (SEACIT), suppress TORC1 under both low leucine- and nitrogen-depletion conditions. Co-immunoprecipitations with mutants of Whi2, Psr1, Psr2 and fragments of Tor1 support the model that Whi2 recruits Psr1 and Psr2 to TORC1. In accordance, the interaction between Whi2 and Tor1 appears to increase under low leucine but decreases under nitrogen-depletion conditions. Although the targets of Psr1 and Psr2 phosphatases are not known, mutation of their active sites abolishes their inhibitory effects on TORC1. Consistent with the conservation of HAD phosphatases across species, human HAD phosphatases CTDSP1 (CTD small phosphatase 1), CTDSP2, and CTDSPL can functionally replace Psr1 and Psr2 in yeast, restoring TORC1 inhibition and autophagy activation in response to low leucine conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。