Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms.

人类卫星3 DNA编码兆碱基规模的转录因子结合平台

阅读:4
作者:Franklin J Matthew, Dubocanin Danilo, Chittenden Cy, Barillas Ashlie, Lee Rosa Jooyoung, Ghosh Rajarshi P, Gerton Jennifer L, Guan Kun-Liang, Altemose Nicolas
Eukaryotic genomes frequently contain large arrays of tandem repeats, called satellite DNA. While some satellite DNAs participate in centromere function, others do not. For example, Human Satellite 3 (HSat3) forms the largest satellite DNA arrays in the human genome, but these multi-megabase regions were almost fully excluded from genome assemblies until recently, and their potential functions remain understudied and largely unknown. To address this, we performed a systematic screen for HSat3 binding proteins. Our work revealed that HSat3 contains millions of copies of transcription factor (TF) motifs bound by over a dozen TFs from various signaling pathways, including the growth-regulating transcription effector family TEAD1-4 from the Hippo pathway. Imaging experiments show that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using synthetic reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, enhancing RNA Polymerase I activity. Beyond discovering a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining an important functional role for these enormous genomic elements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。