BACKGROUND: Dysregulation of cell cycle progression is a common feature of human cancer cells; however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest in breast cancer. METHODS: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and its association with patient survival. Quantitative real-time PCR and Western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assays, flow cytometry, and in vivo analyses were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA sequencing was applied to identify the differentially expressed genes regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1. RESULTS: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse-free survival of patients with breast cancer. Roquin1 overexpression inhibited cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizes cell cycle-promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2), by targeting the stem-loop structure in the 3' untranslated region (3'UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle-promoting mRNAs. CONCLUSIONS: Our findings demonstrated that Roquin1 is a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle-promoting genes, which might be a potential molecular target for breast cancer treatment.
Roquin1 inhibits the proliferation of breast cancer cells by inducing G1/S cell cycle arrest via selectively destabilizing the mRNAs of cell cycle-promoting genes.
Roquin1 通过选择性地破坏细胞周期促进基因的 mRNA,诱导 G1/S 细胞周期停滞,从而抑制乳腺癌细胞的增殖
阅读:5
作者:Lu Wenbao, Zhou Meicen, Wang Bing, Liu Xueting, Li Bingwei
| 期刊: | Journal of Experimental & Clinical Cancer Research | 影响因子: | 12.800 |
| 时间: | 2020 | 起止号: | 2020 Nov 23; 39(1):255 |
| doi: | 10.1186/s13046-020-01766-w | 研究方向: | 细胞生物学 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
