Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is associated with neurological symptoms, but the molecular mechanisms have not yet been identified. Since the S1 subunit (S1) of the envelope of the SARS-CoV2 Spike glycoprotein can reach the CNS, we studied whether S1 could cause neuronal death in a direct manner. Transfection of the S1 plasmid in SH-SY5Y cells reduces cell survival in a time-dependent manner, whereas the overexpression of the S2 subunit does not. Notably, isoform 4 of histone deacetylases (HDAC4) is involved in S1-induced cell toxicity, whereas, among the different cell death drug inhibitors, only the necroptosis blocker Necrostatin-1 counteracted the neurodetrimental effect of S1. Coherently, an increase of the necroptosis marker receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and a reduction of its transcriptional repressor cAMP response element-binding protein (CREB) occur in S1-overexpressing cells. Noteworthy, HDAC4 interacts with CREB determining its protein reduction and the consequent increase of RIPK1. Importantly, we found that S1 recombinant protein (S1rp), through the internalization of the surface receptor Neuropilin 1 (NRP1), but not via Angiotensin-Converting Enzyme 2 (ACE 2) receptor, enters the cytoplasm causing cell death in differentiated SH-SY5Y cells. Finally, in accordance with other papers demonstrating that COVID-19 patients had more severe ischemic strokes with worse outcomes, we found that S1rp increased oxygen glucose deprivation/reoxygenation-induced toxicity in an additive manner, via the NRP1/HDAC4/CREB/RIPK1 pathway. In conclusion, this is the first report identifying the molecular determinants involved in Spike S1-induced neurotoxicity.
Role of NRP1/HDAC4/CREB/RIPK1 Axis in SARS-CoV2 S1 Spike Subunit-Induced Neuronal Toxicity.
NRP1/HDAC4/CREB/RIPK1轴在SARS-CoV-2 S1刺突亚基诱导的神经元毒性中的作用
阅读:5
作者:Sanguigno Luca, Guida Natascia, Cammarota Mariarosaria, Ruggiero Silvia, Serani Angelo, Galasso Francesca, Pizzorusso Vincenzo, Boscia Francesca, Formisano Luigi
| 期刊: | FASEB BioAdvances | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 May 30; 7(8):e70023 |
| doi: | 10.1096/fba.2025-00005 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
