Lipid transfer proteins mediate the non-vesicular transport of lipids at membrane contact sites to regulate the lipid composition of organelle membranes. Despite significant recent advances in our understanding of the structural basis for lipid transfer, its functional regulation remains unclear. In this study, we report that S-palmitoylation modulates the cellular function of ATG2, a rod-like lipid transfer protein responsible for transporting phospholipids from the endoplasmic reticulum (ER) to phagophores during autophagosome formation. During starvation-induced autophagy, ATG2A undergoes depalmitoylation as the balance between ZDHHC11-mediated palmitoylation and APT1-mediated depalmitoylation. Inhibition of ATG2A depalmitoylation leads to impaired autophagosome formation and disrupted autophagic flux. Further, in cell and in vitro analyses demonstrate that S-palmitoylation at the C-terminus of ATG2A anchors the C-terminus to the ER. Depalmitoylation detaches the C-terminus from the ER membrane, enabling it to interact with phagophores and promoting their growth. These findings elucidate a S-palmitoylation-dependent regulatory mechanism of cellular ATG2, which may represent a broad regulatory strategy for lipid transport mediated by bridge-like transporters within cells.
S-palmitoylation modulates ATG2-dependent non-vesicular lipid transport during starvation-induced autophagy.
S-棕榈酰化在饥饿诱导的自噬过程中调节 ATG2 依赖的非囊泡脂质运输
阅读:4
作者:Zheng Wenhui, Pu Maomao, Zeng Sai, Zhang Hongtao, Wang Qian, Chen Tao, Zhou Tianhua, Chang Chunmei, Neculai Dante, Liu Wei
| 期刊: | EMBO Journal | 影响因子: | 8.300 |
| 时间: | 2025 | 起止号: | 2025 May;44(9):2596-2619 |
| doi: | 10.1038/s44318-025-00410-7 | 研究方向: | 信号转导 |
| 信号通路: | Autophagy | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
