Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid metabolic enzyme, as a critical mediator linking complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling to FMT via calcium signaling. In bleomycin (BLM)-induced pulmonary fibrosis of C57BL/6JGpt mice, and in C5a-stimulated primary lung fibroblasts, the expression of ACSL4 was markedly upregulated. Pharmacological inhibition of ACSL4 (PRGL493) or C5aR1 (PMX53) attenuated the deposition of ECM and suppressed the expression of fibrotic markers in vivo and in vitro. Mechanistically, the activation of C5a/C5aR1 signaling increased intracellular calcium levels and promoted the expression of ACSL4, while inhibition of calcium signaling (FK506) reversed the upregulation of ACSL4 and FMT-related changes, including the expression of α-smooth muscle actin (αSMA) and the migration of fibroblasts. Notably, inhibition of ACSL4 did not affect the proliferation of fibroblasts, suggesting its specific role in phenotypic transition. These findings demonstrate that ACSL4 functions downstream of C5a/C5aR1-induced calcium signaling to promote FMT and the progression of pulmonary fibrosis. Targeting ACSL4 may therefore offer a novel therapeutic strategy for IPF.
ACSL4 Drives C5a/C5aR1-Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis.
ACSL4 在博来霉素诱导的小鼠肺纤维化模型中驱动 C5a/C5aR1-钙诱导的成纤维细胞向肌成纤维细胞的转变
阅读:5
作者:Ren Tingting, Shi Jia, Zhuang Lili, Su Ruiting, Lai Yimei, Yang Niansheng
| 期刊: | Biomolecules | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 31; 15(8):1106 |
| doi: | 10.3390/biom15081106 | 种属: | Mouse |
| 靶点: | ACSL4 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
