Differential regulation of Mn-superoxide dismutase in neurons and astroglia by HIV-1 gp120: Implications for HIV-associated dementia.

HIV-1 gp120 对神经元和星形胶质细胞中 Mn-超氧化物歧化酶的差异性调节:对 HIV 相关痴呆症的影响

阅读:5
作者:Saha Ramendra N, Pahan Kalipada
HIV-associated dementia, like several other neurodegenerative diseases, is characterized by selective degeneration of neurons amidst survival of glial cells like astroglia. The molecular basis of such selective susceptibility within the same milieu remains largely unknown. Neurons are rarely infected by the virus. However, they are vulnerable to viral products, like HIV-1 coat protein gp120. Interestingly, gp120 induced oxidative stress in neurons, but not in astroglia. This led us to postulate that astroglia were armed with a more efficient antioxidant system than neurons. Here, we report that the constitutive level of MnSOD (SOD2), the major cellular antioxidant enzyme, is significantly higher in astroglia than in neurons. Furthermore, gp120 treatment enhanced MnSOD levels in astroglia but decreased the same in neurons. This increase in astroglial MnSOD was dependent on NF-kappaB, the crucial transcription factor required for sod2 gene transcription. Blocking NF-kappaB with p65-antisense, p65-si-RNA, or a specific inhibitor, NBD peptide, led to reduced MnSOD levels and enhanced vulnerability of astroglia to gp120. Additionally, neurons were found to have a lower constitutive level of NF-kappaB p65 than astrocytes. Overexpression of p65 increased the level of MnSOD in neurons. This, in turn, elicited greater neuronal resistance to gp120. Taken together, our study suggests that astroglia manifest a higher threshold for gp120-induced lethality than neurons due to greater MnSOD availability, which is demonstrated due to greater level of NF-kappaB p65.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。