Hydrophobicity causes anomalous migration of cystine/glutamate antiporter SLC7A11 in SDS-PAGE with low acrylamide concentration.

疏水性导致胱氨酸/谷氨酸反向转运蛋白 SLC7A11 在低丙烯酰胺浓度的 SDS-PAGE 中发生异常迁移

阅读:4
作者:Emmanuel Nsengiyumva, He Qian, Kang Yixin, Zhang Dianbao, Gao Min, Wang Minglin, Fan Kexin, Xiong Jingwen, Wu Shaobo, Fa Botao, Xiao Zhengtao, Niu Yingfang, Yao Jun, Zhang Yilei
The cystine/glutamate antiporter, solute carrier family 7 member 11 (SLC7A11), plays a crucial role in regulating redox homeostasis and cell death processes such as apoptosis and ferroptosis. These processes are implicated in various diseases, including cancer, organ injuries and neurodegenerative disorders. However, the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) expression pattern of SLC7A11 varies across studies and remains unclear. In many studies, including ours, SLC7A11 migrates at an atypical molecular weight (MW) of approximately 37 kDa, which is lower than its theoretical molecular mass of 55.4 kDa. This discrepancy raises concerns about the precise molecular mass and expression pattern of SLC7A11 in SDS-PAGE. We confirmed that this fast-migrating band corresponds to SLC7A11 through knockdown of endogenous SLC7A11 or overexpression of exogenous SLC7A11. Furthermore, we ruled out the possibility of proteolytic cleavage after protein translation. We found that the high hydrophobicity of SLC7A11 is a key factor responsible for its anomalous migration. Substituting the non-polar residue isoleucine (Ile) with the polar residue asparagine (Asn) reduced its hydrophobicity and restored normal migration, aligning with its predicted MW of 55 kDa. Additionally, we observed that SLC7A11 migrated faster in SDS-PAGE at lower acrylamide concentrations, whereas higher concentrations (e.g. 12% or 15%) eliminated the gel shift. This study clarifies the expression pattern of SLC7A11 in SDS-PAGE and emphasizes the importance of considering physicochemical properties such as hydrophobicity and gel concentration when characterizing membrane proteins like SLC7A11.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。