Caffeic acid phenethyl ester protects renal tubular epithelial cells against ferroptosis in diabetic kidney disease via restoring PINK1-mediated mitophagy

咖啡酸苯乙酯通过恢复PINK1介导的线粒体自噬,保护糖尿病肾病中的肾小管上皮细胞免受铁死亡的影响。

阅读:3
作者:Ying Lu # ,Ye Zhu # ,Sheng Feng ,Qifei Cong ,Sixia Chen ,Ying Zeng ,Kai Song ,Ji Hu
Mounting evidence indicates that renal tubular ferroptosis plays a crucial role in the progression of diabetic kidney disease (DKD). Caffeic acid phenethyl ester (CAPE), derived from propolis, a precious resinous substance synthesized by various bee species, has garnered broad attention in biomedical research. This study aims to explore the mechanism by which CAPE protects renal tubular epithelial cells (TECs) against ferroptosis in DKD. DBA/2J mice were administered streptozotocin (STZ) by intraperitoneal injection, fed a high-fat diet (HFD) and treated with CAPE. The findings revealed significant changes in ferroptosis markers. In diabetic mice and TECs under high-glucose (HG) conditions, levels of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) decreased, while transferrin receptor 1 (TFR1) increased. These changes were accompanied by a reduction in antioxidant capability and the accumulation of malondialdehyde (MDA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the intersection targets of CAPE and ferroptosis were mainly located in the mitochondria and exhibited high enrichment values in mitophagy. Further investigations revealed that HG induced a depolarization of mitochondrial membrane potential and an excessive level of mitochondrial reactive oxygen species (ROS), accompanied by defective mitophagy. The administration of CAPE inhibited exacerbated ferroptosis and rescued defective mitophagy induced by DKD. In addition, CAPE restored PTEN-induced putative kinase 1 (PINK1) levels, which were markedly diminished in the kidneys of DKD mice and TECs subjected to HG. Molecular docking simulation experiments suggested that CAPE is steadily bound to the PINK1 active pocket. Cellular Thermal Shift Assay (CETSA) and Drug Affinity Responsive Target Stability assay (DARTS) showed that CAPE enhances the thermal stability of the PINK1 protein within a specific temperature range and protects the PINK1 protein from degradation by proteolytic enzymes. These results confirm that CAPE interacts with PINK1 as its specific target. However, the positive outcomes of CAPE treatment on ferroptosis were nullified by the PINK1 siRNA. This research indicates that CAPE has potential therapeutic benefits for DKD by protecting renal TECs against ferroptosis via rescuing PINK1-mediated mitophagy. These findings suggest that CAPE shows potential as a therapeutic agent to prevent tubular injury in DKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。