OBJECTIVE: Carboxymethylcellulose (CMC), one of the most common emulsifiers used in the food industry, has been reported to promote chronic inflammatory diseases, but its impact on acute inflammatory diseases, e.g., acute pancreatitis (AP), remains unclear. This study investigates the detrimental effects of CMC on AP and the potential for mitigation through Akkermansia muciniphila or butyrate supplementation. DESIGN: C57BL/6 mice were given pure water or CMC solution (1%) for 4 weeks and then subjected to caerulein-induced AP. The pancreas, colon, and blood were sampled for molecular and immune parameters associated with AP severity. Gut microbiota composition was assessed using 16S rRNA gene amplicon sequencing. Fecal microbiota transplantation (FMT) was used to illustrate gut microbiota's role in mediating the effects of CMC on host mice. Additional investigations included single-cell RNA sequencing, monocytes-specific C/EBPδ knockdown, LPS blocking, fecal short-chain fatty acids (SCFAs) quantification, and Akkermansia muciniphila or butyrate supplementation. Finally, the gut microbiota of AP patients with different severity was analyzed. RESULTS: CMC exacerbated AP with gut dysbiosis. FMT from CMC-fed mice transferred such adverse effects to recipient mice, while single-cell analysis showed an increase in classical monocytes in blood. LPS-stimulated C/EBPδ, caused by an impaired gut barrier, drives monocytes towards classical phenotype. LPS antagonist (eritoran), Akkermansia muciniphila or butyrate supplementation ameliorates CMC-induced AP exacerbation. Fecal Akkermansia muciniphila abundance was negatively correlated with AP severity in patients. CONCLUSIONS: This study reveals the detrimental impact of CMC on AP due to gut dysbiosis, with Akkermansia muciniphila or butyrate offering potential therapeutic avenues for counteracting CMC-induced AP exacerbation. Video Abstract.
Dietary emulsifier carboxymethylcellulose-induced gut dysbiosis and SCFA reduction aggravate acute pancreatitis through classical monocyte activation.
膳食乳化剂羧甲基纤维素引起的肠道菌群失调和短链脂肪酸减少会通过经典的单核细胞活化加重急性胰腺炎
阅读:6
作者:Feng Yongpu, Chen Wenjin, Chen Jiayu, Sun Fengyuan, Kong Fanyang, Li Lei, Zhao Yating, Wu Shouxin, Li Zhaoshen, Du Yiqi, Kong Xiangyu
| 期刊: | Microbiome | 影响因子: | 12.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 13(1):83 |
| doi: | 10.1186/s40168-025-02074-1 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
