Production of L-Malic Acid by Metabolically Engineered Aspergillus nidulans Based on Efficient CRISPR-Cas9 and Cre-loxP Systems.

利用高效 CRISPR-Cas9 和 Cre-loxP 系统对构巢曲霉进行代谢工程改造,生产 L-苹果酸

阅读:4
作者:Chen Ziqing, Zhang Chi, Pei Lingling, Qian Qi, Lu Ling
Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, A. nidulans is a promising microbial cell factory to biosynthesize various products in industry. However, it remains unclear for whether it is also a suitable host for synthesizing abundant L-malic acid. In this study, we developed a convenient and efficient double-gene-editing system in A. nidulans strain TN02A7 based on the CRISPR-Cas9 and Cre-loxP systems. Using this gene-editing system, we made a L-malic acid-producing strain, ZQ07, derived from TN02A7, by deleting or overexpressing five genes (encoding Pyc, pyruvate carboxylase; OahA, oxaloacetate acetylhydrolase; MdhC, malate dehydrogenase; DctA, C4-dicarboxylic acid transporter; and CexA, citric acid transporter). The L-malic acid yield in ZQ07 increased to approximately 9.6 times higher (up to 30.7 g/L titer) than that of the original unedited strain TN02A7, in which the production of L-malic acid was originally very low. The findings in this study not only demonstrate that A. nidulans could be used as a potential host for biosynthesizing organic acids, but also provide a highly efficient gene-editing strategy in filamentous fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。