The difference between steroid diabetes mellitus and type 2 diabetes mellitus: a whole-body 18F-FDG PET/CT study

类固醇性糖尿病与 2 型糖尿病的区别:全身 18F-FDG PET/CT 研究

阅读:5
作者:Qingqing Zhao, Jinxin Zhou, Yu Pan, Huijun Ju, Liying Zhu, Yang Liu, Yifan Zhang

Aims

Steroid diabetes mellitus (SDM) is a metabolic syndrome caused by an increase in glucocorticoids, and its pathogenesis is unclear. 18F-FDG PET/CT can reflect the glucose metabolism of tissues and organs under living conditions. Here, PET/CT imaging of SDM and type 2 diabetes mellitus (T2DM) rats was used to visualize changes in glucose metabolism in the main glucose metabolizing organs and investigate the pathogenesis of SDM.

Conclusions

The pathogenesis of SDM is different from that of T2DM. The increased glucose metabolism of skeletal muscle may be related to the increased compensatory secretion of insulin. Glucocorticoids promote the proliferation of islet α cells and cause an increase in gluconeogenesis in the liver, which may cause increased blood glucose.

Methods

SDM and T2DM rat models were established. During this time, PET/CT imaging was used to measure the %ID/g value of skeletal muscle and liver to evaluate glucose uptake. The pancreatic, skeletal muscle and liver were analyzed by immunohistochemistry.

Results

SDM rats showed increased fasting blood glucose and insulin levels, hyperplasia of islet α and β cells, increased FDG uptake in skeletal muscle accompanied by an up-regulation of PI3Kp85α, IRS-1, and GLUT4, no significant changes in liver uptake, and that glycogen storage in the liver and skeletal muscle increased. T2DM rats showed atrophy of pancreatic islet β cells and decreased insulin levels, significantly reduced FDG uptake and glycogen storage in skeletal muscle and liver. Conclusions: The pathogenesis of SDM is different from that of T2DM. The increased glucose metabolism of skeletal muscle may be related to the increased compensatory secretion of insulin. Glucocorticoids promote the proliferation of islet α cells and cause an increase in gluconeogenesis in the liver, which may cause increased blood glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。