Regulatory Mechanisms of Yili Horses During an 80 km Race Based on Transcriptomics and Metabolomics Analyses.

基于转录组学和代谢组学分析的伊犁马在80公里赛程中的调控机制

阅读:4
作者:Wang Jianwen, Ren Wanlu, Li Zexu, Li Luling, Wang Ran, Ma Shikun, Zeng Yaqi, Meng Jun, Yao Xinkui
Equine endurance exercise induces physiological changes that alter metabolism and molecular pathways to maintain balance after intense physical activity. However, the specific regulatory mechanisms remain under debate. Identifying differentially expressed genes (DEGs) and differential metabolites (DMs) associated with equine endurance is essential for elucidating these regulatory mechanisms. This study collected blood samples from six Yili horses before and after an 80 km race and conducted transcriptomics and metabolomics analyses, yielding 722 DEGs and 256 DMs. These DEGs were primarily enriched in pathways related to amino acid biosynthesis, cellular senescence, and lipid metabolism/atherosclerosis. The DMs were predominantly enriched in fatty acid biosynthesis and the biosynthesis of unsaturated fatty acids. The integrative transcriptomics and metabolomics analyses of DEGs and DMs highlight functional changes during the endurance race. The findings offer a holistic understanding of the regulatory mechanisms underlying equine endurance and a solid foundation for formulating training programs to optimize horse performance in endurance racing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。