Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties. This research undertook a comprehensive analysis of cassava seedlings' physiological, gene expression, and metabolite responses under low nitrogen stress. Findings revealed that nitrogen deficiency drastically suppressed seedling growth, significantly reduced nitrate and ammonium transport to aerial parts, and led to a marked increase in carbohydrate, reactive oxygen species, and ammonium ion levels in the leaves. Transcriptomic and metabolomic analyses further demonstrated notable alterations in genes and metabolites linked to carbon and nitrogen metabolism, flavonoid biosynthesis, and the purine metabolic pathway. Additionally, several transcription factors associated with cassava flavonoid biosynthesis under nitrogen-deficient conditions were identified. Overall, this study offers fresh insights and valuable genetic resources for unraveling cassava's adaptive mechanisms to nitrogen deprivation.
Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.
整合转录组学和代谢组学分析为木薯应对氮缺乏提供了新的见解
阅读:4
作者:Wang Yu, Chu Jing, Zhang Haoyang, Ju Hao, Xie Qing, Jiang Xingyu
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2024 | 起止号: | 2025 Jan 14; 15:1488281 |
| doi: | 10.3389/fpls.2024.1488281 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
