Optimization of ultrasound-mediated DNA transfer for bacteria and preservation of frozen competent cells.

优化超声介导的DNA转移技术用于细菌培养和冷冻感受态细胞的保存

阅读:5
作者:Zhang Meng, Tang Rongkang, Li Fang-Xia, Jin Wen-Yu, Guo Jia-Xin, Teng Lin-Zuo, Meng Guangxun, Sansonetti Philippe J, Gao Yi-Zhou
The transformation of DNA into cells is the basis of molecular biology. Commonly employed techniques include heat shock transformation, electro-transformation, conjugation, transduction, and protoplast fusion. Recently, ultrasonic transformation technology has been developed to transfer DNA into competent cells. The transformation conditions, such as temperature and ultrasonic power, were preliminarily studied. However, this technique has not been widely applied because competent cells must be prepared de novo. In this study, various factors, such as ultrasonic frequency and power, were optimized for the ultrasonic transformation of Escherichia coli. The study found that the optimal conditions for ultrasonic transformation with a defined ultrasonic transformation vial were a frequency of 28 kHz and a power of 80 W. Meanwhile, this research demonstrated that combining the 42°C heat shock conditions with ultrasonic transformation is the most efficient method compared to using only heat shock. Furthermore, the cryoprotective agent ratio for ultrasonic competent cells was investigated and optimized. These findings provide new insights into enhancing transformation efficiency and lay a foundation for the broader application of ultrasonic transformation. IMPORTANCE: Plasmid transformation is widely applicable in gene expression and modification. As an efficient, non-invasive, and gentle method of transformation, ultrasonic transformation provides a novel approach for strain modification. This research presents new strategies for enhancing transformation efficiency and lays the groundwork for expanding the utilization of ultrasonic transformation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。