Caveolin-1 Deficiency in Macrophages Alleviates Carbon Tetra-Chloride-Induced Acute Liver Injury in Mice.

巨噬细胞中 Caveolin-1 缺乏可减轻四氯化碳诱导的小鼠急性肝损伤

阅读:5
作者:Li Ruirui, Shu Yixue, Yan Yulin, Zhu Junyi, Cheng Zilu, Zhang Jie, Zhu Liming, Qiao Yanhua, Sun Quan
Bone marrow-derived macrophages (BMMs) exhibit dynamic behavior and functional capabilities in response to specific microenvironmental stimuli. Recent investigations have proved that BMMs play crucial roles in promoting necrotic lesion resolution. Despite substantial advancements in understanding their activation and interaction with injured livers, researchers face challenges to develop effective treatments based on manipulating BMMs function. Caveolin-1 (Cav-1) is the major structural protein on the plasma membrane. We previously reported that Cav-1 knockout (KO) mice exhibited less functional damage and necrosis in carbon tetrachloride (CCl(4))-induced liver injury. We hypothesize that the activation and recruitment of BMMs are involved in the resolution of necrotic lesions in Cav-1 KO mice. Wild-type (WT) and Cav-1 KO mice were injected with CCl(4) (10% v/v) to induce acute liver injury model. Blood samples and hepatic tissues were harvested for serum alanine transaminase (ALT) activity assessment, histopathological examination through hematoxylin-eosin (H&E) staining, and BMMs subpopulation analysis via flow cytometry. Then, primary BMMs were isolated and cultured to investigate the effect of Cav-1 on BMMs polarization, migration, and activation of STAT3 signal pathway. Validation of hepatic macrophage depletion was induced by administrating clodronate liposomes (CLs), and BMMs reconstitution was evaluated by EGFP labelled BMMs. Following this, hepatic macrophages were depleted by CLs, BMMs were isolated from Cav-1 KO, and WT mice were cultured and administrated to evaluate the protective role of Cav-1-deleted BMMs on the resolution of hepatocellular necrosis and apoptosis in acute liver injury. The BMMs ratio significantly increased from 2.12% (1D), 4.38% (1W), and 5.38% (2W) in oil control mice to 7.17%, 14.90%, and 19.30% in CCl(4)-treated mice (p < 0.01 or p < 0.001). Concurrently, Cav-1 positive BMMs exhibited a marked elevation from 6.41% at 1D to 24.90% by 2W (p = 0.0228). Cav-1 KO exerted protective effects by reducing serum ALT by 26% (p = 0.0265) and necrotic areas by 28% (p = 0.0220) and enhancing BMMs infiltration by 60% (p = 0.0059). In vitro, Cav-1 KO BMMs showed a decrease in CD206 fluorescence intensity (p < 0.001), a time-dependent upregulation of arginase-1 mRNA (p < 0.05 or p < 0.01), a 1.22-fold increase in phosphorylated STAT3 (p = 0.0036), and impaired wound healing from 12 to 24 h (p < 0.001). The macrophage-depleting action in livers by CL injection persists for a minimum of 48 h. Administrated EGFP(+) BMMs emerged as the predominant population following CL injection for a duration of 48 h. Following clodronate liposome-mediated hepatic macrophage depletion, the adoptive transfer of Cav-1 KO BMMs demonstrated therapeutic efficacy in CCl(4)-induced acute liver injury. In CCl(4)-induced acute liver injury, the adoptive transfer of Cav-1 KO BMMs reduced necrosis by 12.8% (p = 0.0105), apoptosis by 25.2% (p = 0.0127), doubled macrophages infiltration (p = 0.0269), and suppressed CXCL9/10 mRNA expression (p = 0.0044 or p = 0.0385). BMMs play a key role in the resolution of liver necrotic lesions in CCl(4)-induced acute liver injury. Cav-1 depletion attenuates hepatocellular necrosis and apoptosis by accelerating BMMs recruitment and M2 polarization. Cav-1 in macrophages may represent a potential therapeutic target for acute liver injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。