Elucidating the linagliptin and fibroblast activation protein binding mechanism through molecular dynamics and binding free energy analysis.

通过分子动力学和结合自由能分析阐明利格列汀与成纤维细胞活化蛋白的结合机制

阅读:6
作者:Shi Mingsong, Wang Fang, Lu Zhou, Yin Yuan, Zheng Xueting, Wang Decai, Cai Xianfu, Jing Meng, Wang Jianjun, Chen Junxian, Jiang Xile, Yu Wenliang, Li Xiaoan
Fibroblast activation protein (FAP) is highly expressed in solid tumors and may be a potential diagnostic and therapeutic target in solid cancers. Linagliptin inhibits FAP; however, the interaction mechanism between linagliptin and FAP remains unclear. In this study, the binding free energy for linagliptin with human FAP was estimated at -13.66 kcal/mol, and the dissociation constant was 243 nM based on surface plasmon resonance analyses. E203, E204, and Y656 formed hydrogen bonds with ammonium. Y625 formed an unstable hydrogen bond with the carbonyl group. W623 and Y541 interacted with the quinazoline and pyrimidine-2,4-dione rings, respectively, via π-π interactions. The butyne group formed hydrophobic interactions with residues V650, Y653, Y656, and Y660. ZINC000299754517 and ZINC000299754576 were identified as potential FAP inhibitors. The R1 and R4 regions of linagliptin could be optimized to increase its FAP binding affinity. These findings can guide linagliptin structural optimization to improve its FAP binding affinity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。