The developmental transcriptome dynamics of current-year shoot utilized as scion in Camellia chekiangoleosa.

以当年生枝条为接穗的茶树(Camellia chekiangoleosa)发育转录组动态

阅读:4
作者:Sheng Yu, Gao Haili, Yu Chunlian, Huang Guangyuan, Wang Kunxi, Wang Kailiang, Lv Leyan, Long Wei
BACKGROUND: Camellia chekiangoleosa is the most widely planted red-flowered and large-fruited oil-camellia species, with high value in edible oil production and landscaping. To better understand the weak scion development and slow graft-union healing underlying grafting propagation challenges in C. chekiangoleosa, we conducted temporal RNA-seq on current-year shoots with five time points determined according to changes in cell wall composition, aiming to reveal dynamic developmental regulation. RESULTS: Analysis of temporal expression characteristics of genome-wide genes and differentially expressed genes (DEGs) revealed that genes differentially patterned between stem and apical bud were enriched in functions related to cell division and differentiation, hormone responses, and vascular or flower development. Coexpression network analysis revealed that red/far-red light and gibberellin (GA) signaling were closely correlated with flowering development in C. chekiangoleosa shoots. We further analyzed a unique module showing a negative correlation between the module and traits (cell wall composition, i.e., lignin, cellulose, and hemicellulose content). Genes in the top-scored sub-cluster of this module were enriched in shoot development-related processes, including cell wall dynamics, xylem development, secondary cell wall biogenesis, lignin biosynthesis, and procambium histogenesis. WOX4 and PXY, known markers of cambium cells, were identified as key hub genes, along with the actin-binding protein WLIM1. These coexpressed hub genes associated with vascular system development peaked in June in stems and were validated by qRT-PCR, suggesting that June may be an optimal grafting season for C. chekiangoleosa. CONCLUSIONS: Integrating transcriptomics and physiology defined the dynamic signature of changes in composition of cell wall and gene activity during the development of current-year shoots in C. chekiangoleosa. Our findings provide insights into a potential molecular strategy for breeders, targeting key regulators specific to cambium differentiation, and physiological strategy for hormone or light supplied artificially to enhance grafting productivity of C. chekiangoleosa.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。