BACKGROUND: Camellia chekiangoleosa is the most widely planted red-flowered and large-fruited oil-camellia species, with high value in edible oil production and landscaping. To better understand the weak scion development and slow graft-union healing underlying grafting propagation challenges in C. chekiangoleosa, we conducted temporal RNA-seq on current-year shoots with five time points determined according to changes in cell wall composition, aiming to reveal dynamic developmental regulation. RESULTS: Analysis of temporal expression characteristics of genome-wide genes and differentially expressed genes (DEGs) revealed that genes differentially patterned between stem and apical bud were enriched in functions related to cell division and differentiation, hormone responses, and vascular or flower development. Coexpression network analysis revealed that red/far-red light and gibberellin (GA) signaling were closely correlated with flowering development in C. chekiangoleosa shoots. We further analyzed a unique module showing a negative correlation between the module and traits (cell wall composition, i.e., lignin, cellulose, and hemicellulose content). Genes in the top-scored sub-cluster of this module were enriched in shoot development-related processes, including cell wall dynamics, xylem development, secondary cell wall biogenesis, lignin biosynthesis, and procambium histogenesis. WOX4 and PXY, known markers of cambium cells, were identified as key hub genes, along with the actin-binding protein WLIM1. These coexpressed hub genes associated with vascular system development peaked in June in stems and were validated by qRT-PCR, suggesting that June may be an optimal grafting season for C. chekiangoleosa. CONCLUSIONS: Integrating transcriptomics and physiology defined the dynamic signature of changes in composition of cell wall and gene activity during the development of current-year shoots in C. chekiangoleosa. Our findings provide insights into a potential molecular strategy for breeders, targeting key regulators specific to cambium differentiation, and physiological strategy for hormone or light supplied artificially to enhance grafting productivity of C. chekiangoleosa.
The developmental transcriptome dynamics of current-year shoot utilized as scion in Camellia chekiangoleosa.
以当年生枝条为接穗的茶树(Camellia chekiangoleosa)发育转录组动态
阅读:7
作者:Sheng Yu, Gao Haili, Yu Chunlian, Huang Guangyuan, Wang Kunxi, Wang Kailiang, Lv Leyan, Long Wei
| 期刊: | BMC Plant Biology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 May 28; 25(1):712 |
| doi: | 10.1186/s12870-025-06715-3 | 研究方向: | 发育与干细胞 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
