BACKGROUND: Rice bacterial leaf blight, caused by the Gram-negative bacterium Xanthomonas oryzae pv. Oryzae (Xoo), significantly impacts rice production. To address this disease, research efforts have focused on discovering and utilizing novel disease-resistant genes and examining their functional mechanisms. METHODS AND RESULTS: In this study, a variety of bacterial strains were utilized. CX28-3, AX-11, JC12-2, and X10 were isolated from the high-altitude japonica rice-growing region on the Yunnan Plateau. Additionally, PXO61, PXO86, PXO99, and PXO339, sourced from the International Rice Research Institute (IRRI), were included in the analysis. To evaluate the resistance characteristics of Haonuoyang, artificial leaf cutting and inoculation methods were applied. Results indicated that Haonuoyang exhibited broad-spectrum resistance. Additionally, to explore the genetic mechanisms of resistance, the TFAIII-type transcription factor OsZFPH was cloned from Haonuoyang using PCR amplification. The subcellular localization method identified the precise location of the OsZFPH gene within the cell. The expression of OsZFPH was induced by Xoo stress. The overexpression of OsZFPH resulted in increased activities of enzymes, including SOD, CAT, and POD, while silencing the gene led to reduced enzyme activities. Furthermore, the hormones SA (salicylic acid), JA (jasmonic acid), and GA (gibberellin) were shown to positively regulate the gene expression. Protein interactions with OsZFPH were verified through a yeast two-hybrid system and BiFC technology. Hap5, which aligned with the sequence of Haonuoyang, was found to belong to a haplotype consisting of Jingang 30, 40 resequenced rice varieties, 18 Oryza rufipogon, and 29 Oryza granulata. CONCLUSIONS: The findings of this study emphasize the vital role of OsZFPH in rice resistance to bacterial leaf blight. The identification of broad-spectrum resistance in Haonuoyang and the understanding of OsZFPH gene functions provide valuable insights for the future development of rice varieties with improved resistance to this destructive disease.
A TFAIII-Type Transcription Factor OsZFPH Regulating a Signaling Pathway Confers Resistance to Xanthomonas oryzae pv. Oryzae in Rice.
TFAIII 型转录因子 OsZFPH 调控信号通路,赋予水稻对水稻黄单胞菌的抗性
阅读:4
作者:Yang Chunyun, A Xinxiang, Tang Cuifeng, Dong Chao, Zhang Feifei, He Chunmei, Sun Yiding, Yang Yi, Yan Sandan, Liu Yanhong, Yang Yayun, Dai Luyuan
| 期刊: | Genes | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Feb 20; 16(3):240 |
| doi: | 10.3390/genes16030240 | 研究方向: | 信号转导 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
