Dynamic control exhibits increasing significance in microbial cell factory engineering by precisely manipulating gene expression over time and levels. However, the practical uses of most dynamic control tools still remain challenging because of poor scale-up robustness, especially for non-model chassis. Herein, a quorum sensing (QS)-based collaborative dynamic control system is constructed in Halomonas TD by regrouping two orthogonal quorum-sensing modules into two cell types, namely cell-A harboring cinR-luxI and cell-B harboring luxR-cinI together with sfGFP driven by P(cin) and P(lux) promoters, respectively. Effective gene expression control with over 15-time dynamic foldchange is achieved by mixing cells A and B at different ratios and time points in a lab-scale fed-batch study. Besides, dynamic inhibitory and amplified control is further developed by cascading CRISPRi/dCas9 system and MmP1 RNA polymerase, respectively, yielding up to 80% repression efficiency and 30-time amplification foldchange under high cell density fermentation. Moreover, 500 mg L(-1) indigo and 4.7 g L(-1) superoxide dismutase (SOD) are obtained by engineered Halomonas using QS-based control tools in the fed-batch study, showing 1.5- and 1.0-fold higher, respectively, than the yields by recombinants induced by IPTG. This study exemplifies a standardized and streamlined inducer-free dynamic control pattern for metabolic engineering with promising robustness in scale-up fermentation contexts.
Developing Quorum Sensing-Based Collaborative Dynamic Control System in Halomonas TD01.
在 Halomonas TD01 中开发基于群体感应的协作动态控制系统
阅读:4
作者:Lin Yi-Na, Li Yu-Xi, Zheng Ye, Deng Yi-Hao, Liu Kai-Xuan, Gan Yue, Li Hao, Wang Jun, Peng Jia-Wen, Deng Rui-Zhe, Wang Huai-Ming, Wang Hui, Ye Jian-Wen
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 May;12(18):e2408083 |
| doi: | 10.1002/advs.202408083 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
