The Relationship between Brachionus calyciflorus-Associated Bacterial and Bacterioplankton Communities in a Subtropical Freshwater Lake.

亚热带淡水湖中与萼花臂尾轮虫相关的细菌群落和浮游细菌群落之间的关系

阅读:6
作者:Zhang Yongzhi, Feng Sen, Gao Fan, Wen Hao, Zhu Lingyun, Li Meng, Xi Yilong, Xiang Xianling
Zooplankton bodies are organic-rich micro-environments that support fast bacterial growth. Therefore, the abundance of zooplankton-associated bacteria is much higher than that of free-living bacteria, which has profound effects on the nutrient cycling of freshwater ecosystems. However, a detailed analysis of associated bacteria is still less known, especially the relationship between those bacteria and bacterioplankton. In this study, we analyzed the relationships between Brachionus calyciflorus-associated bacterial and bacterioplankton communities in freshwater using high-throughput sequencing. The results indicated that there were significant differences between the two bacterial communities, with only 29.47% sharing OTUs. The alpha diversity of the bacterioplankton community was significantly higher than that of B. calyciflorus-associated bacteria. PCoA analysis showed that the bacterioplankton community gathered deeply, while the B. calyciflorus-associated bacterial community was far away from the whole bacterioplankton community, and the distribution was relatively discrete. CCA analysis suggested that many environmental factors (T, DO, pH, TP, PO(4)(3-), NH(4)(+), and NO(3)(-)) regulated the community composition of B. calyciflorus-associated bacteria, but the explanatory degree of variability was only 37.80%. High-throughput sequencing revealed that Raoultella and Delftia in Proteobacteria were the dominant genus in the B. calyciflorus-associated bacterial community, and closely related to the biodegradation function. Moreover, several abundant bacterial members participating in carbon and nitrogen cycles were found in the associated bacterial community by network analysis. Predictive results from FAPROTAX showed that the predominant biogeochemical cycle functions of the B. calyciflorus-associated bacterial community were plastic degradation, chemoheterotrophy, and aerobic chemoheterotrophy. Overall, our study expands the current understanding of zooplankton-bacteria interaction and promotes the combination of two different research fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。