Exosomes have the ability to transport RNA/miRNAs and possess immune modulatory functions. Heat stress, a significant limiting factor in the poultry industry, can induce oxidative stress and suppress the immune responses of laying hens. In this study, we investigated the expression profiles of serum exosomes and their miRNAs in Roman laying hens who were fed a diet with either 0 or 200 mg/kg curcumin under heat stress conditions. The numbers of exosomes were significantly higher in both the HC (heat stress) and HT (heat stress with 200 mg/kg curcumin) groups compared to the NC (control) group and NT (control with 200 mg/kg curcumin) group (p < 0.05). Additionally, we observed that the most prevalent particle diameters were 68.75 nm, 68.25 nm, 54.25 nm, and 60.25 nm in the NC, NT, HC, and HT groups, respectively. From our sRNA library analysis, we identified a total of 863 unique miRNAs; among them, we screened out for subsequent bioinformatics analysis a total of 328 gga-miRNAs(chicken miRNA from the miRbase database). The KEGG pathways that are associated with target genes which are regulated by differentially expressed miRNAs across all four groups at a p-value < 0.01 included oxidative phosphorylation, protein export, cysteine and methionine metabolism, fatty acid degradation, ubiquitin-mediated proteolysis, and cardiac muscle contraction. The above findings suggest that curcumin could mitigate heat-induced effects on laying hens by altering the miRNA expression profiles of serum exosomes along with related regulatory pathways.
Curcumin Changed the Number, Particle Size, and miRNA Profile of Serum Exosomes in Roman Laying Hens under Heat Stress.
姜黄素改变了热应激下罗马蛋鸡血清外泌体的数量、粒径和 miRNA 谱
阅读:4
作者:Kang Kai, Gao Wen, Cui Yanfeng, Xiao Mei, An Lilong, Wu Jiang
| 期刊: | Genes | 影响因子: | 2.800 |
| 时间: | 2024 | 起止号: | 2024 Feb 8; 15(2):217 |
| doi: | 10.3390/genes15020217 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
