Diabetic nephropathy (DN) is the most common cause of end-stage renal disease. Although numerous reports have demonstrated a correlation between epithelial-mesenchymal transition (EMT) and renal fibrosis, how these processes lead to tubular dysfunction remains unclear. Here, we show that FOXO3a protects kidneys from injury in type II DN by increasing Sirt6 expression, which deacetylates Smad3 and inhibits its transcriptional activity. The results showed that progressive EMT in the kidneys from db/db mice is associated with Sirt6 downregulation and involved in tubular injury and dysfunction. The reduction of Sirt6 levels in db/db mice resulted in progressive kidney injury, indicating the protective role of Sirt6. Furthermore, Sirt6 was shown to directly bind to Smad3, a key downstream mediator of TGF-β, and could deacetylate it to inhibit its nuclear accumulation and transcriptional activity in HK2 cells. Besides, we demonstrate that FOXO3a activates Sirt6 expression by binding to its promoter. shRNA-induced FOXO3a knockdown in the kidneys of db/db mice exacerbated tubular injury and renal function loss. Mechanistically, FOXO3a protects against kidney injury in type II DN through the Sirt6/Smad3 axis. Thus, the pharmacological targeting of FOXO3a-mediated Sirt6/Smad3 signaling pathways may provide a novel strategy for treating type II DN.
FOXO3a Protects against Kidney Injury in Type II Diabetic Nephropathy by Promoting Sirt6 Expression and Inhibiting Smad3 Acetylation.
FOXO3a 通过促进 Sirt6 表达和抑制 Smad3 乙酰化来保护 II 型糖尿病肾病免受肾损伤
阅读:8
作者:Wang Xiaowei, Ji Tingting, Li Xiaoying, Qu Xiaolei, Bai Shoujun
| 期刊: | Oxidative Medicine and Cellular Longevity | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 May 26; 2021:5565761 |
| doi: | 10.1155/2021/5565761 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病、肾损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
