TBK1 is involved in programmed cell death and ALS-related pathways in novel zebrafish models.

TBK1参与了新型斑马鱼模型中的程序性细胞死亡和ALS相关通路

阅读:4
作者:Raas Quentin, Haouy Gregoire, de Calbiac Hortense, Pasho Elena, Marian Anca, Guerrera Ida Chiara, Rosello Marion, Oeckl Patrick, Del Bene Filippo, Catanese Alberto, Ciura Sorana, Kabashi Edor
Pathogenic mutations within the TBK1 gene leading to haploinsufficiency are causative of amyotrophic lateral sclerosis (ALS). This gene is linked to autophagy and inflammation, two cellular mechanisms reported to be dysregulated in ALS patients, although its functional role in the pathogenesis could involve other players. We targeted the TBK1 ortholog in zebrafish, an optimal vertebrate model for investigating genetic defects in neurological disorders. We generated zebrafish models with invalidating tbk1 mutations using CRISPR-Cas9 or tbk1 knockdown models using antisense morpholino oligonucleotide (AMO). The early motor phenotype of zebrafish injected with tbk1 AMO beginning at 2 days post fertilization (dpf) is associated with the degeneration of motor neurons. In parallel, CRISPR-induced tbk1 mutants exhibit impaired motor function beginning at 5 dpf and increased lethality beginning at 9 dpf. A metabolomic analysis showed an association between tbk1 loss and severe dysregulation of nicotinamide metabolism, and incubation with nicotinamide riboside rescued the motor behavior of tbk1 mutant zebrafish. Furthermore, a proteomic analysis revealed increased levels of inflammatory markers and dysregulation of programmed cell death pathways. Necroptosis appeared to be strongly activated in TBK1 fish, and larvae treated with the necroptosis inhibitor necrosulfonamide exhibited improved survival. Finally, a combined analysis of mutant zebrafish and TBK1-mutant human motor neurons revealed dysregulation of the KEGG pathway "ALS", with disrupted nuclear-cytoplasmic transport and increased expression of STAT1. These findings point toward a major role for necroptosis in the degenerative features and premature lethality observed in tbk1 mutant zebrafish. Overall, the novel tbk1-deficient zebrafish models offer a great opportunity to better understand the cascade of events leading from the loss of tbk1 expression to the onset of motor deficits, with involvement of a metabolic defect and increased cell death, and for the development of novel therapeutic avenues for ALS and related neuromuscular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。