Comparative anatomical studies of primates and extinct hominins, including Neanderthals, show that the modern human brain is characterised by a disproportionately enlarged neocortex relative to the striatum. To explore the molecular basis of this difference, we screened for missense mutations that are unique to modern humans and occur at high frequency and that alter post-translational sites. One such mutation was identified in DCHS1, a protocadherin family gene, and it was found to disrupt an N-glycosylation site in modern humans. Using CRISPR/Cas9-editing we introduced into human-induced pluripotent stem cells (hiPSCs) this ancestral DCHS1 variant present in Neanderthals and other primates, representing the ancestral state before the modern human-specific substitution. Leveraging hiPSCs-derived neural organoids, we observed an expansion of striatal progenitors at the expense of the neocortex, mirroring the anatomical distribution seen in non-human primates. We further identify the ephrin receptor EPHA4 as a binding partner of DCHS1 and show that modern human-specific alterations in DCHS1 modulate EPHA4-ephrin signalling, contributing to a gradual shift in the neocortex-to-striatum ratio - a hallmark of brain organisation in our species.
DCHS1 Modulates Forebrain Proportions in Modern Humans via a Glycosylation Change.
DCHS1 通过糖基化改变调节现代人类前脑的比例
阅读:5
作者:Pravata M Veronica, Forero Andrea, Ayo Martin Ane C, Berto Giovanna, Heymann Tim, Fast Luise, Mann Matthias, Riesenberg Stephan, Cappello Silvia
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 14 |
| doi: | 10.1101/2025.05.14.654031 | 种属: | Human |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
